
International Journal of Computer Trends and Technology Volume 73 Issue 4, 1-4, April 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I4P101 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Revolutionizing POS Terminal Testing with Python and

CI/CD Automation

Avinash Swaminathan Vaidyanathan1, Ajay Krishna Ramamurthy2, Manoj Shankar Murugesan3

1,2,3Independent Researcher, USA.

1Corresponding Author : avinash3788@gmail.com

Received: 01 March 2025 Revised: 02 April 2025 Accepted: 16 April 2025 Published: 28 April 2025

Abstract - In modern software development, ensuring the efficiency and reliability of Point of Sale (POS) terminal testing is

essential for businesses. This paper introduces an automated testing framework using Python, designed to streamline the

testing process for POS terminals. The A framework utilizes open-source libraries to interact with GUI elements and is

deployed within VDI environments. Upon a commit in GitLab (CI/CD), a CI/CD pipeline job that launches a Selenium script

to initiate the VDI will be executed. Based on the commit keyword, relevant test cases are executed automatically using

Behave. Successful test case execution results in automatic code merging into production. This innovative approach

significantly reduces manual effort and enhances the efficiency of POS terminal testing, providing a robust solution for

continuous integration and delivery. By automating the testing process, businesses can achieve faster release cycles and

maintain high-quality software standards.

Keywords - Automation framework, Continuous testing, DevOps, Gitlab, Pipelines.

1. Introduction
Point-of-sale (POS) systems are critical for retail and

service sectors, where transaction accuracy and system

reliability directly impact customer satisfaction and revenue.

Traditional testing methods often rely on manual execution

and post-deployment corrections, which delay feedback and

extend release cycles. In contrast, the current approach

leverages Python-based automation within a CI/CD pipeline

to test POS terminals pre-deployment. Much like a well-

orchestrated assembly line that ensures every part is in sync,

our framework integrates Python for GUI interaction. It

behaves for behaviour-driven testing, triggering the

appropriate test cases.

This paper details the framework’s architecture,

implementation, and impact on accelerating release cycles.

2. Literature Review
Automated testing in software development has been the

subject of numerous studies, each highlighting various

methodologies and tools. One area of focus is GUI-based

automation, which utilizes tools like Selenium and

PyAutoGUI. Selenium is known for its ability to test web

applications across different browsers, making it common in

many development environments. PyAutoGUI offers a

solution for automating tasks on desktop applications,

enabling comprehensive and versatile testing processes.

These tools have streamlined testing workflows, identified

user interface bugs, and enhanced the user experience of

applications.

Another aspect of automated testing is Continuous

Integration and Continuous Deployment (CI/CD). This

methodology has been adopted in large-scale enterprise

applications, where tools such as Jenkins, GitLab CI, and

CircleCI play a role. CI/CD pipelines facilitate the automated

testing and deployment of code changes, ensuring that every

modification undergoes testing before being deployed. This

practice minimizes human errors, accelerates development

cycles, and maintains the application’s integrity and

functionality. Adopting CI/CD in enterprises underscores its

reliability and scalability in modern software development.

An area that has received less attention is POS terminal

testing within virtualized environments. Point of Sale (POS)

terminals are critical in retail and hospitality industries, and

their functionality is important. Virtualized environments

like Citrix Virtual Desktop Infrastructure (VDI) offer

solutions for POS terminal testing. These environments

enable testers to replicate various configurations and

scenarios without requiring physical hardware, providing a

flexible and cost-effective testing approach. Few studies have

specifically addressed this domain, highlighting a gap in the

literature. Future research needs to explore methodologies

and tools tailored for POS terminal testing within virtualized

environments, aiming to improve coverage, efficiency, and

overall testing outcomes.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1corresponding.author@mailserver.com(Size9)

Avinash Swaminathan Vaidyanathan et al. / IJCTT, 73(4), 1-4, 2025

2

While GUI-based automation and CI/CD practices are

researched and adopted, POS terminal testing within

virtualized environments remains underexplored. Addressing

this gap presents an opportunity for future research to

enhance automated testing methodologies, advancing the

field and contributing to developing robust and reliable

software applications.

3. Research Gap
Current automation approaches for POS terminals lack

seamless integration within virtual desktop infrastructures

and CI/CD pipelines. Existing methods either rely on manual

intervention or are limited to non-virtualized environments,

reducing their applicability in enterprise settings. Our

proposed framework overcomes these limitations by fully

automating test execution within a VDI and integrating with

CI/CD for continuous testing and deployment.

4. Background
4.1. POS Architecture and Challenges

POS terminals typically operate within a layered

architecture comprising hardware devices, middleware, and

backend systems. The testing challenges include:

Hardware-Software Interactions: Verifying the seamless

operation between touchscreens, card readers, and backend

software.

• E2E Response time: Calculating End-to-End response

time using the stopwatch approach is time-consuming.

• API response time: Identifying the correct APIs for each

user action will be difficult as many APIs are involved.

• Access to components: Getting access to each

component, like APIs, databases, and middleware, is

challenging.

4.2. Existing Solutions and Their Gaps

Traditional testing methods lack the following:

• Automatic metric capture: Testers should manually

record the response time for each user action using a

stopwatch.

• Automated report: The test report must be prepared

manually which is effort consuming.

• No integration: There is no integration with Gitlab for

seamless test runs and JIRA to store the results.

• Build validation: Manually mark as pass / fail based on

test results.

Table 1. Python framework vs Traditional method

Feature Python framework
Stopwatch

approach

Automatic report Yes No

Automatic test

run for each

change

Yes No

3rd Party

Integration
Yes No

5. Materials and Methods
5.1. Framework Architecture and Design

 The POS application is typically deployed across

multiple Linux or Windows servers. Each server hosts

instances of the POS application and might also run auxiliary

services. The POS machines are connected virtually via the

Tiger VNC server. Batch scripts are in place to automatically

connect to a specific store’s register.

• Python-Based Automation: Core testing routines are

written in Python. These scripts drive the entire test

workflow, orchestrating the interaction between various

components.

• Selenium for GUI Testing: Selenium is used to simulate

user interactions within the Citrix VDI. It automates the

process of launching applications, interacting with GUI

elements, and verifying expected behaviours.

• Behaviour-Driven Development (BDD) with Behave:

Behave enables writing test scenarios in natural

language. Test cases are triggered on specific commit

keywords, ensuring only relevant tests are executed.

Sample behave feature test case:

@CustomGroup

Scenario outline: Apply coupon

Given: User login to the POS terminal using the

<username> and <password>

Then, the User navigates to the sale screen

Then, the user scans an UPC

Then, the User clicks the total

Then, the user applies the coupon

Then, the User pays the remaining amount via cash

Then, the User completes the transaction

Examples:

 user1 | password 1 |

5.2. Implementation Steps

• GitLab setup: Set up the CI/CD pipeline to enable

continuous testing and build validation. GitLab CI/CD

configurations are tailored to detect specific commit

keywords, triggering only relevant test suites.

• Report integration: To store the test results in a

centralized server cloud, preferably using 3rd party tools

like JIRA, etc.

• Post Hook: Develop an API to execute the right test

cases based on the commit made.

• Let’s trace the End-to-end flow as below,

Whenever a commit is made in the GitLab repository,

the post hook API will trigger an automated python

selenium script to launch the VDI in browser.

Once the VDI is logged in, the startup script to launch

the Tiger VNC to connect to the POS application will be

triggered.

Avinash Swaminathan Vaidyanathan et al. / IJCTT, 73(4), 1-4, 2025

3

Then, the startup script to launch the Tiger VNC to

connect to the POS application will be triggered

automatically. Then, the relevant test cases will be

executed automatically, and the results will be updated

in the JIRA ticket.

The results from JIRA will then be sent to GitLab to

mark the build status as Pass / Fail. If pass then, then the

build will be deployed to production automatically.

Fig. 1 Flow diagram

6. Results and Discussion
6.1. Performance Analysis

The automated framework was evaluated in a controlled

retail environment with multiple POS terminals simulated in

the Citrix VDI. Key observations include:

Test Execution Time: Average test runs were reduced by

approximately 30% compared to manual testing.

Error Detection: Early defect detection increased by

40%, thanks to real-time validation during the CI/CD

process.

Test Coverage: Test coverage increased by 30%

compared to manual testing.

Table 2. Performance comparison

Aspects Traditional
Python

framework

Test Execution time 30 Minutes 9 Minutes

Error Detection
Only during

QA
Immediately

Test Coverage 30% 60%

6.2. Comparative Analysis with Traditional Methods

Traditional testing approaches often rely on scheduled

batch tests, resulting in delayed feedback and prolonged bug

resolution. In contrast, our automated framework provides:

Continuous Feedback: Instant validation upon code

commits.

Higher Accuracy: Automation reduces human error and

variability.

Faster Release Cycles: Immediate merging of validated

code leads to accelerated deployment schedules.

6.3. Challenges and Limitations

While the framework demonstrates significant benefits,

several challenges were encountered:

Initial Setup Complexity: Configuring the Citrix VDI

and integrating various tools required substantial upfront

effort.

Learning Curve: Developers needed to adapt to the BDD

approach with Behave.

Scalability Considerations: Although effective for small-

to-medium deployments, further optimizations are necessary

for extremely large retail networks.

7. Experimental Setup
Our test environment consists of:

7.1. Hardware

POS terminal hardware with a Linux-based OS.

Remote Server: A Windows server is required to run the

Python framework and to launch the POS application via the

TigerVNC server. The server should run with maximum

uptime of no less than 99.999%

New Build /

Deployment

Gitlab

Build Pass / Fail

Execute python –

Citrix utility

API call to fetch result

from JIRA

Report portal for detailed
results

Run scenarios in Citrix VDI and
upload result to JIRA

Avinash Swaminathan Vaidyanathan et al. / IJCTT, 73(4), 1-4, 2025

4

7.2. Software

Selenium, Python with the below dependencies, and

GitLab CI/CD.

• Behave

• pygetwindow

• opencv-python

• pyautogui

• pywinauto

• easygui

• pyodbc

• beautifulsoup4

• selenium

7.3. Testing Procedure

A GitLab pipeline triggers test execution upon a commit,

launching a Selenium script to access the VDI, executing

relevant test cases, and reporting results.

7.4. Validation

Test results are compared against expected outputs, and

failed tests prevent automatic merging.

8. Case Study: Implementation in a Retail

Environment
8.1. System Configuration

A retail chain with 60 POS terminals was selected as a

pilot site. Each terminal was virtualized using Citrix VDI,

and the testing framework was integrated into the

organization’s GitLab repository.

8.2. Observations and Outcomes

• Transaction Processing: The automated tests simulated

real-world transactions, identifying configuration errors

and software bugs.

• Cycle Time Reduction: Deployment cycle times were

reduced from days to hours.

• Error Resolution: The time to resolution for critical

errors dropped from 45 minutes to under 10 minutes on

average.

8.3. Lessons Learned

The case study highlighted the importance of:

• Robust Environment Replication: Ensuring the test

environment closely mirrors production conditions.

 Clear Test Criteria: Defining precise commit keywords

to trigger relevant test cases.

Continuous Monitoring: Using dashboards to track test

performance and quickly address anomalies.

9. Future Work
9.1. Enhancements in Test Automation

Future efforts will focus on:

Expanding test libraries to cover more POS scenarios.

Incorporating real-time reporting features to enhance

feedback loops.

9.2. Integration with AI and Machine Learning

Leveraging GenAI could enable:

Predictive maintenance by identifying recurring issues.

Adaptive testing that dynamically adjusts test scenarios

based on historical data patterns.

9.3. Expanding to Additional Environments

Extending the framework to support mobile POS

systems and IoT-based devices. Enhancing cross-platform

compatibility to accommodate various operating systems

beyond Citrix VDI.

10. Conclusion
The introduction of a Python-based automated testing

framework for POS terminals marks a significant

advancement in pre-deployment testing. Integrating with a

CI/CD pipeline and utilizing tools such as Selenium and

Behave reduces manual effort, accelerates release cycles, and

maintains high-quality software standards. This approach is

particularly beneficial in dynamic environments where rapid

iteration and robust testing are paramount.

Acknowledgments
All the 3 authors contributed equally to this work.

References
[1] Python Documentation, Python Software Foundation, 2025. [Online]. Available: https://www.python.org/doc/

[2] SeleniumHQ, Selenium WebDriver, 2025. [Online]. Available: https://www.selenium.dev/documentation/en/

[3] Behavior Driven Development in Python, Behave Documentation, 2025. [Online]. Available: https://behave.readthedocs.io/

[4] What is CI/CD?, CI/CD, 2025. [Online]. Available: https://about.gitlab.com/topics/ci-cd/

